Dual Ring Imaging Cherenkov Status

E. Cisbani, M. Contalbrigo
(for the dRICH involved people)
Italian National Istitute of Nuclear Physics - Rome and Ferrara and
Italian National Institute of Health

EIC YP Meeting Mar / 19-21 / 2020

Hadron ID @ EIC h-endcap

"Simulations show that in order to satisfy the physics goals of the EIC, it is desirable to provide π/K identification in the central barrel up to 5-7 GeV/c, in the electron-going endcap up ~10 GeV/c, and in the hadron-going endcap one would need to reach ~50 GeV/c.", from the "Electron-Ion Collider Detector Requirements and R&D Handbook", January 10, 2019

Physics Requirement:

1. Continuous $\pi/K/(p)$ identification up to ~50 GeV/c in hadron endcap

Main Technological Challenges:

- 2. Geometrical constraints (relatively small longitudinal space and large transverse space)
- 3. Solenoid Magnetic Field
- 4. Radiation levels

Why a dual radiator RICH?

Single detector technology cannot cover the whole range up to ≈50 GeV/c with "good" separation of pi-K-p

Three main options:

1) TOF+RICH:

Need challenging time resolution (≈3 ps sigma!)

2a) TOF+RICH(n1)+RICH(n2)

Expected to be more

expensive due to twice the sensors and electronics

2b) TOF+RICH(n1,n2)
... next slides

Dual Radiator - Focusing - RICH in EIC Hadron-endcap

Radiators:

- Aerogel: 4 cm, $n_{(400nm)}$ ~1.02 + 3 mm acrylic filter
- Gas: 1.6m (1.1m ePHENIX), n_{C2F6}~1.0008

6 Identical Open Sectors (Petals):

- Large Focusing Mirror with R ~2.9m (~2.0m ePHENIX)
- Optical sensor elements: ~4500 cm²/sector, 3 mm pixel size, UV sensitive, out of charged particles acceptance

Optimized for JLEIC, preliminary implementation in ePHENIX

ePHENIX

Phase Space:

- Polar angle: 5-25 deg

-Momentum: 3-50 GeV/c

dRICH MonteCarlo Expected Performance

- Montecarlo: GEMC (Geant4)
- Acrylic Filter (<300nm) after the aerogel to minimize Rayleigh scattering
- Aerogel and mirror quality from CLAS12/RICH
- PMT 3x3 mm pixel; QE from real CLAS12/RICH/PMT data (200-500 nm)
- Tracking accuracy 0.5 mrad
- Include 3T central magnetic field
- Cherenkov Angle reconstruction based on Inverse Ray Tracing

Hadron identification (π /K/p): provides better than 3 sigma from ~3 up to ~50 GeV/c for π /K

polar angle [deg]

Single Photon Angular resolution

IRT Event Based Reconstruction for dRICH

Inverse Ray-Tracing

PYTHIA based DIS events: ≈20% with multiple tracks & overlapping rings

Implemented efficient event based reconstruction method: it maximizes 2 likelihood functions in sequence to reduce significantly the computational efforts

Example: event with 2 tracks and 15 hits

Brute Force: up to ~488 billion combinations
Our approach: 1200 combinations

... and it seems to perform pretty well (see above)

dRICH Model Integrated in Bayesian Optimizer

• Use Bayesian Inference to efficiently maximize proper **Figure of Merit**: π -K Cherenkov angles separation in critical phase space regions (e.g. TOF-aerogel, aerogel-gas transitions, high momentum limit ...)

 The optimization approach can be ported to any detector (or combination of detectors) development where a detailed MonteCarlo exists

momentum [GeV/c]

10°

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas
Gas Radiator	Cover High Mom. Range above Aerogel	≥3σ π-K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. \sim 0.5 ns μs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)

EIC Detector Environment

dRICH sensor location relaxes requirements on neutron dose and material budget

Neutron Fluence

Moderate except for very forward regions Reference value $\sim 10^{11} \text{ n}_{eq}/\text{cm}^2$ for several years at max lumi (10^{34} /s/cm²)

SiPM: radiation mitigation for SPE actively studied till 10¹² n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191

Magnetic Field

~ 1 T order of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

SiPM SPE capability under study since 2012 @ INFN

Contalbrigo++ NIMA 766 (2014) 22, Balossino ++ NIMA876 (2017) 89

Electronics and DAQ

Electronics minimum features required:

- Amplify and shape single photon analog signal
- Convert to digital: amplitude (or 0/1 at least) and timing info
- Transfer to DAQ nodes
- Time resolution: ≤0.5 ns sub-ns timestamp accuracy (?)
- Single photon sensitivity!

Estimated, very tentative DAQ performance requirement of Front End Electronics

		dRICH	CLAS12-RICH			
Time resolution (Sampling period)	ns	0.5	1			
# channels/sector		50000	25000			
# bits/ch (binary info)		1	1			
Data rate/sector	Gbits/s	100000	50000			
Data rate/sector – zero suppression*	Gbits/s	800	375			
Sort of streaming readout mode						

^{*}Assume 1 MHz dark count/pixel as dominant contribution
Current single JLab/SSP FPGA subsystem processor has ≈100 Gbits/s capability

dRICH Prototype Design

- Design in an advanced stage, mechanical details being finalized
- Standard Vacuum Technologies to optimize gas handling
- Two tuneable mirrors system for using the same detector
- Common (limited) sensitive surface for both aerogel and gas photons
- Detector and aerogel box isolated from the gas tank

In-house Expertise and Equipment

INFN/Duke > 6 staff > 4 technicians + students

HERMES RICH: successful dual-RICH

CLAS12 RICH: geometry scale similar to EIC

Workshops + laboratory test-benches

Prototyping and test-beams

Summary

Patrizia's Questions

Technology used: spell out clearly any risk associated, if any

Consolidated baseline of the dRICH design exists

Can in principle be realized with standard and mature technology solutions

Specific Risk: availability/procurement of Freon gases

Common Challenge: SPE sensor in high magnetic field

- Momentum range covered: p versus theta and Nsigma vs. p

 >3♂ separation in the 3-50 GeV/c momentum and 5-25 deg polar angle ranges
- Robustness of the design (e.g. sensitivity to magnetic field) and has a prototype been built?
 Performance on physics (PYTHIA/SIDIS) events simulated in high 3T field
 Prototype design consolidated; component procurement started
- Are the electronics considerations clear (channel count, data size, rate, background)
 Can be realized with available architectures
 Details under study: depends on machine design, IP, sensor and readout
- Time needed to complete the R&D and available workforce

About 3 years (for validated design)

Experienced workforce available and increasing

INFN groups interested in the critical aspects: SiPM, electronics, radiators

Status of Simulation and Reconstruction

Software: realistic Geant4/GEMC MonteCarlo
Bayesian optimizer and event based PID implemented